Understanding compilations, plan reuse and recompilations of stored procedures
 Itzik Ben-Gan

Ref #2a.00:00
Agenda

· Plan reuse

· Circumventing undesired plan reuse

· Parameter sniffing (most mean variable sniffing, although hey are different):

· Efficiency problem

· Dynamic filters problem

· User supposed to be able to filter…problem in common problems

· Recompilations

· When it is a good vs. bad recompile

PLANNED REUSE

Step 1 create procedure
Create procedure orderbydate

@odate as datetime

As

Select orderid, orderdate, customerid, employeeid

from dbo.orders where orderdate > = @odate

go

Step 2 Add a commented out line so you can track the sql statement in sys.syscacheobjects (he used the guid with selectnewid() and then threw that in the stored proc commented out.

select * from sys.syscacheobjects where sql like '%8F23FBB4-EEC3-489A-8D13-30A86BA86AA6%' (use the guiid that you received with select newid() and place that in your commented field….or use whatever)

and sql not like '%sys%'
Ref # 2a.5:00

Step 3 Run sp and view stats

· Set statistics io on

· Exec dbo.usp_getorders ‘19980506’ (last date

· This is a very selective query.

· Any query over 1% on an index is not as efficient as a full table scan

· We have a plan in cache now, but it is a very selective one (he ran the exec above for the specific date)
· We ended up with only 10 reads. The problem is that is uses the existing plan in cache. The first time we run it is desirable to run with typical parameters.

· Select from syscacheobjects….

· Usecounts will show how many times the plan has been used.

· Plean reuse is undesired when

· Cost of reusing an inadequate plan is higher than cost of recompilation

Step 4 Run sp with a non-selective criteria

· Exep dbo.usp_getorders ‘919950505’

· Logical reads 1664 !!
How do we intervene?

1. Change index design such that any input parameter would still give an optimal plan

a. Include clause if we end up with a covering index. For 2005 make sure to include the indexes in your include clause

i. Create index myindex on dbo.orders(orderdate)

1. Include(orderdate, customerid, employeeid)

a. Now: no lookups

b. When it doesn’t matter the selectivity of the query it is called a trivial plan. It is always the same plan. The optimizer marks it as a trivial plan. Because with a trivial plan to compile statistics.

b. Add a with recompile to procedure

i. It won’t bother now to keep the plan in cache

ii. Bad because it compiles it every time.

c. What if we have more than one query

i. Add option (recompile) after where clause in the query that you don’t want to have a plan for.

2. Usually the cost of recompile every time is less than the cost of it using a wrong plan.

PARAMETER SNIFFING PROBLEM Ref #2a.21:00

"Parameter sniffing" refers to a process whereby SQL Server's execution environment "sniffs" the current parameter values during compilation or recompilation, and passes it along to the query optimizer so that they can be used to generate potentially faster query execution plans. The word "current" refers to the parameter values present in the statement call that caused a compilation or a recompilation (from Microsoft white paper Batch Compilation, Recompilation, and Plan Caching Issues in SQL Server 2005)
The problem: When unit of optimization is the whole batch values of variables are unknown at optimization time creating a plan that isn’t effective.

Illustrate the problem

Step 1. Create sp for this procedure

SET NOCOUNT ON;

USE Northwind;

GO

IF OBJECT_ID('dbo.usp_GetOrders') IS NOT NULL

 DROP PROC dbo.usp_GetOrders;

GO

CREATE PROC dbo.usp_GetOrders

 @days AS INT

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@days, (SELECT MAX(OrderDate) FROM dbo.Orders));

SELECT OrderID, CustomerID, EmployeeID, OrderDate

FROM dbo.Orders

WHERE OrderDate >= @odate;

GO

Step 2 Illustrate the problem.

Display estimated execution plan and run
EXEC dbo.usp_GetOrders 0;

The entire batch gets optimized at runtime. The entire statement gets optimized before the declare statement is run. So parameters cannot be sniffed and the plan cannot be optimized properly. This can be illustrated by the Estimated number of rows: 249. How many rows in entire table? 830. 249 is a hardcoded guess (30%). It is selectivity hard coded value for range query, creating an ineffective plan.
Ref# 2a.28:00

Initial optimization occurs at batch level so the optimizer doesn’t see and can’t sue any statement level optimization (unsure if this is correct terminology or not)

How can we fix this?

1. (New feature in 2005)

· Add option(optimize for(@d=’99991231’)) to give a hint

· restricted to constants only
· Example

ALTER PROC dbo.usp_GetOrders

 @days AS INT

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@days, (SELECT MAX(OrderDate) FROM dbo.Orders));

SELECT OrderID, CustomerID, EmployeeID, OrderDate

FROM dbo.Orders

WHERE OrderDate >= @odate

OPTION (OPTIMIZE FOR(@odate = '99991231'));
GO

· Run it and you will see an estimated number of rows = 1
DBCC FREEPROCCACHE;

EXEC dbo.usp_GetOrders 0;

GO

2. Enhancement in 2008. If we don’t know whether the value will be selective or not selective. We will be able to use Option(optimize for (@d unknown))

3. Option (recompile) solves the variable sniffing problem. Because it’s executed at statement level.
Example

ALTER PROC dbo.usp_GetOrders

 @days AS INT

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@days, (SELECT MAX(OrderDate) FROM dbo.Orders));

SELECT OrderID, CustomerID, EmployeeID, OrderDate

FROM dbo.Orders

WHERE OrderDate >= @odate

OPTION (RECOMPILE);

GO

Run it

DBCC FREEPROCCACHE;

EXEC dbo.usp_GetOrders 0;

EXEC dbo.usp_GetOrders 1000;

4. FYI: Catching for null doesn’t change this problem (Set @odate = @odate, 10990101’)

a. When the optimizer optimizes this it will optimize it as null. Same problem it won’t evaluate the set date line because it doesn’t optimize at statement level. Only batch level.

DYNAMIC FILTERS PROBLEM

User application needs to support optional filters and the user may or may not want to filter based on each attribute

Setup

-- Script That Creates and Populates the Orders Table

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.usp_GetOrders') IS NOT NULL

 DROP PROC dbo.usp_GetOrders;

IF OBJECT_ID('dbo.Orders') IS NOT NULL

 DROP TABLE dbo.Orders;

GO

SELECT OrderID, CustomerID, EmployeeID, OrderDate,

 CAST('A' AS CHAR(2000)) AS filler

INTO dbo.Orders

FROM Northwind.dbo.Orders;

CREATE CLUSTERED INDEX idx_OrderDate ON dbo.Orders(OrderDate);

CREATE UNIQUE INDEX idx_OrderID ON dbo.Orders(OrderID);

CREATE INDEX idx_CustomerID ON dbo.Orders(CustomerID);

CREATE INDEX idx_EmployeeID ON dbo.Orders(EmployeeID);

GO

-- Stored Procedure usp_GetOrders

-- Static Code with col = @param, OR @param IS NULL

CREATE PROC dbo.usp_GetOrders

 @OrderID AS INT = NULL,

 @CustomerID AS NCHAR(5) = NULL,

 @EmployeeID AS INT = NULL,

 @OrderDate AS DATETIME = NULL

WITH RECOMPILE

AS

SELECT OrderID, CustomerID, EmployeeID, OrderDate, filler

FROM dbo.Orders

WHERE (OrderID = @OrderID OR @OrderID IS NULL)

 AND (CustomerID = @CustomerID OR @CustomerID IS NULL)

 AND (EmployeeID = @EmployeeID OR @EmployeeID IS NULL)

 AND (OrderDate = @OrderDate OR @OrderDate IS NULL);

GO

-- Test the Stored Procedure

EXEC dbo.usp_GetOrders @OrderID = 10248;

EXEC dbo.usp_GetOrders @OrderDate = '19970101';

EXEC dbo.usp_GetOrders @CustomerID = N'CENTC';

EXEC dbo.usp_GetOrders @EmployeeID = 5;

This is a sp that provides dynamic filtering.
Ref #2a.46:00

The optimizer is capable of knowing ahead if null (but the problem here is that it doesn’t know ahead). It has a defensive approach. Let’s try something that will work whether there is a null or not

Even though this is the most common form of implementation, but it is also the most inefficient because we get a full scan instead of a seek (see estimate execution plan)
Ref # 2b.00:00

Recommendation # 1: Use coalesce instead of isnull.

Why?
It causes a seek instead of a scan. There is a reason that it uses a seek and not a scan but i’m not sure why (possibly something about the fact that the result of ISNULL() always takes on the datatype of the first parameter (regardless of whether it is NULL or NOT NULL). COALESCE works more like a CASE expression, which returns a single datatype depending on precendence and accommodating all possible outcomes)
Example

-- Stored Procedure usp_GetOrders

-- Static Code with col = COALESCE(@param, col)

ALTER PROC dbo.usp_GetOrders

 @OrderID AS INT = NULL,

 @CustomerID AS NCHAR(5) = NULL,

 @EmployeeID AS INT = NULL,

 @OrderDate AS DATETIME = NULL

WITH RECOMPILE

AS

SELECT OrderID, CustomerID, EmployeeID, OrderDate, filler

FROM dbo.Orders

WHERE OrderID = COALESCE(@OrderID, OrderID)

 AND CustomerID = COALESCE(@CustomerID, CustomerID)

 AND EmployeeID = COALESCE(@EmployeeID, EmployeeID)

 AND OrderDate = COALESCE(@OrderDate, OrderDate);

GO

Recommendation #2: use dynamic sql

Why? It creates several plans and uses the right one. The dynamic plan is different than the calling one. There are two plans. When you execute again with different parameters a new plan is created and therefore optimized
Also note: To prevent sql injection make sure you specify the parameters (see example below). (ref # 2a.3:00). Specifically, use sp_executesql will elimate the possibility of sql injection over execute method. If you concatenate you are exposing to sql injection. Also, in terms of performance the querystring must be the same to reuse the plan, which is why the following approach works so well.
Why this: ' WHERE 1 = 1'? Because he didn’t want to get t into the complicated logic of the case statement (whether to use ‘where’ or not to use ‘where’). Don’t have to use it, just makes it easier when building case statement. (personal preference)
Use sp_executesql is better performance as the plan(s) can be cached. Execute will never have a plan in cache and therefore will never be used (unless we use the same id) (I found an ok explanation of this here: http://vadivel.blogspot.com/2006/12/spexecutesql-vs-execute-dynamic.html)

Example

-- Stored Procedure usp_GetOrders, Dynamic Code

ALTER PROC dbo.usp_GetOrders

 @OrderID AS INT = NULL,

 @CustomerID AS NCHAR(5) = NULL,

 @EmployeeID AS INT = NULL,

 @OrderDate AS DATETIME = NULL

AS

DECLARE @sql AS NVARCHAR(4000);

SET @sql =

 N'SELECT OrderID, CustomerID, EmployeeID, OrderDate, filler'

 + N' FROM dbo.Orders'

 + N' WHERE 1 = 1'

 + CASE WHEN @OrderID IS NOT NULL THEN

 N' AND OrderID = @oid' ELSE N'' END

 + CASE WHEN @CustomerID IS NOT NULL THEN

 N' AND CustomerID = @cid' ELSE N'' END

 + CASE WHEN @EmployeeID IS NOT NULL THEN

 N' AND EmployeeID = @eid' ELSE N'' END

 + CASE WHEN @OrderDate IS NOT NULL THEN

 N' AND OrderDate = @dt' ELSE N'' END;

EXEC sp_executesql

 @sql,

 N'@oid AS INT, @cid AS NCHAR(5), @eid AS INT, @dt AS DATETIME',

 @oid = @OrderID,

 @cid = @CustomerID,

 @eid = @EmployeeID,

 @dt = @OrderDate;

GO

Recommendation #3 Use a function Ref #2a.10:00

It’s actually the fastest method! Don’t sue this within a procedure though because of the extra overhead created (a plan will be created that calls the function which could kill performance). Only fast if you call the function directly. Of course, you have security problems to consider as well.
Example
-- Function fn_GetOrders

-- Static Code with col = @param, OR @param IS NULL

CREATE FUNCTION dbo.fn_GetOrders

(

 @OrderID AS INT = NULL,

 @CustomerID AS NCHAR(5) = NULL,

 @EmployeeID AS INT = NULL,

 @OrderDate AS DATETIME = NULL

)

RETURNS TABLE

AS

RETURN

 SELECT OrderID, CustomerID, EmployeeID, OrderDate, filler

 FROM dbo.Orders

 WHERE (OrderID = @OrderID OR @OrderID IS NULL)

 AND (CustomerID = @CustomerID OR @CustomerID IS NULL)

 AND (EmployeeID = @EmployeeID OR @EmployeeID IS NULL)

 AND (OrderDate = @OrderDate OR @OrderDate IS NULL);

GO

SELECT * FROM dbo.fn_GetOrders(10248, NULL, NULL, NULL) AS O;

SELECT * FROM dbo.fn_GetOrders(NULL, NULL, NULL, '19970101') AS O;

SOMETHING TO CONSIDER

Set concat_null_yields_null off may have no impact on your code, but it removes the plan in cache because it is a database setting. There are other settings that do the same thing.
Check out whitepaper

Batch Compilation, Recompilation, and Plan Caching Issues in SQL Server 2005
